7 days of WordPress plugins, themes & templates - for free!* Unlimited asset downloads! Start 7-Day Free Trial
Advertisement
  1. Code
  2. Python

Понимаем, сколько памяти используют ваши объекты Python

Read Time: 9 mins

Russian (Pусский) translation by Masha Kolesnikova (you can also view the original English article)

Python - это фантастический язык программирования. Он также известен как довольно медленный, в основном из-за его огромной гибкости и динамических характеристик. Для многих приложений и областей это не проблема из-за их требований и различных методов оптимизации. Менее известно, что графы объектов Python (вложенные словари списков, кортежей и примитивных типов) занимают значительный объем памяти. Это может быть гораздо более серьезным ограничивающим фактором из-за его влияния на кеширование, виртуальную память, многопользовательскую работу с другими программами и в целом более быстрое исчерпание доступной памяти, которая является дефицитным и дорогим ресурсом.

Оказывается, нетривиально выяснить, сколько памяти фактически потребляется. В этой статье я расскажу о тонкостях управления памятью объекта Python и покажу, как точно измерить потребляемую память.

В этой статье я остановлюсь исключительно на CPython - основной реализации языка программирования Python. Эксперименты и выводы здесь не относятся к другим реализациям Python, таким как IronPython, Jython и PyPy.

Также я запустил числа на 64-битном Python 2.7. В Python 3 числа иногда немного отличаются (особенно для строк, которые всегда являются Unicode), но концепции одинаковы.

Практическое исследование использования памяти Python

Во-первых, давайте немного разберемся и получим конкретное представление о фактическом использовании памяти объектами Python.

Встроенная функция sys.getsizeof()

Модуль sys стандартной библиотеки предоставляет функцию getsizeof(). Эта функция принимает объект (и необязательный параметр по умолчанию), вызывает метод sizeof() объекта и возвращает результат, поэтому вы также можете сделать ваши объекты инспектируемыми.

Измерение памяти объектов Python

Давайте начнем с некоторых числовых типов:

Интересно. Целое число занимает 24 байта.

Хм ... float также занимает 24 байта.

Вот это да. 80 байтов! Это действительно заставляет задуматься о том, хотите ли вы представлять большое количество вещественных чисел как числа с плавающей запятой или десятичные дроби.

Давайте перейдем к строкам и коллекциям:

Хорошо. Пустая строка занимает 37 байтов, и каждый дополнительный символ добавляет еще один байт. Это многое говорит о компромиссе между сохранением нескольких коротких строк, когда вы будете платить 37 байтов за каждую, а не одну длинную строку, где вы платите только один раз.

Строки Unicode ведут себя аналогично, за исключением того, что служебные данные составляют 50 байтов, и каждый дополнительный символ добавляет 2 байта. Это стоит учитывать, если вы используете библиотеки, которые возвращают строки Unicode, но ваш текст может быть представлен в виде простых строк.

Кстати, в Python 3 строки всегда имеют Unicode, а служебные данные составляют 49 байт (они где-то сохранили байт). Объект байтов имеет служебную информацию только 33 байта. Если у вас есть программа, которая обрабатывает много коротких строк в памяти, и вы заботитесь о производительности, рассмотрите Python 3.

В чем дело? Пустой список занимает 72 байта, но каждый дополнительный int добавляет всего 8 байтов, где размер int составляет 24 байта. Список, который содержит длинную строку, занимает всего 80 байтов.

Ответ прост. Список не содержит сами объекты int. Он просто содержит 8-байтовый (в 64-битных версиях CPython) указатель на фактический объект int. Это означает, что функция getsizeof() не возвращает фактическую память списка и всех объектов, которые он содержит, а только память списка и указатели на свои объекты. В следующем разделе я представлю функцию deep_getsizeof(), которая решает эту проблему.

История повторяется для кортежей. Накладные расходы пустого кортежа составляют 56 байтов против 72 списка. Опять же, эта разница в 16 байтов на последовательность - это низко висящий плод, если у вас есть структура данных с большим количеством небольших неизменяемых последовательностей.

Наборы и словари якобы вообще не растут при добавлении элементов, но отмечают огромные накладные расходы.

Суть в том, что у объектов Python огромные фиксированные накладные расходы. Если ваша структура данных состоит из большого количества объектов коллекций, таких как строки, списки и словари, которые содержат небольшое количество элементов каждый, вы много платите.

Функция deep_getsizeof()

Теперь, когда я напугал вас до полусмерти и продемонстрировал, что sys.getsizeof() может только сказать вам, сколько памяти занимает примитивный объект, давайте посмотрим на более адекватное решение. Функция deep_getsizeof() рекурсивно выполняет детализацию и вычисляет фактическое использование памяти графом объектов Python.

У этой функции есть несколько интересных аспектов. Она учитывает объекты, на которые ссылаются несколько раз, и учитывает их только один раз, отслеживая идентификаторы объектов. Другая интересная особенность реализации заключается в том, что она в полной мере использует абстрактные базовые классы модуля коллекций. Это позволяет функции очень лаконично обрабатывать любую коллекцию, которая реализует базовые классы Mapping или Container, вместо непосредственного обращения к множеству типов коллекций, таких как: строка, Unicode, байты, список, кортеж, dict, frozendict, OrderedDict, set, frozenset и т.д.

Давайте посмотрим на это в действии:

Строка длиной 7 занимает 44 байта (37 служебных данных + 7 байтов для каждого символа).

Пустой список занимает 72 байта (только накладные расходы).

python deep_getsizeof ([x], set ()) 124

Список, содержащий строку x, занимает 124 байта (72 + 8 + 44).

Список, содержащий строку x 5 раз, занимает 156 байтов (72 + 5 * 8 + 44).

Последний пример показывает, что deep_getsizeof() подсчитывает ссылки на один и тот же объект (строку x) только один раз, но подсчитывается указатель каждой ссылки.

Баг или фича

Оказывается, что у CPython есть несколько хитростей, поэтому числа, которые вы получаете от deep_getsizeof(), не полностью отражают использование памяти программой Python.

Подсчет ссылок

Python управляет памятью, используя семантику подсчета ссылок. Когда на объект больше не ссылаются, его память освобождается. Но пока есть ссылка, объект не будет освобожден. Такие вещи, как циклические ссылки, могут вас сильно укусить.

Маленькие объекты

CPython управляет небольшими объектами (менее 256 байтов) в специальных пулах на 8-байтовых границах. Есть пулы для 1-8 байтов, 9-16 байтов и вплоть до 249-256 байтов. Когда объект размером 10 выделяется, он выделяется из 16-байтового пула для объектов размером 9-16 байт. Таким образом, хотя он содержит только 10 байтов данных, он будет стоить 16 байтов памяти. Если вы выделяете 1 000 000 объектов размером 10, вы фактически используете 16 000 000 байтов, а не 10 000 000 байтов, как вы можете предположить. Эти 60% накладных расходов явно не тривиальны.

Целые числа

CPython хранит глобальный список всех целых чисел в диапазоне [-5, 256]. Эта стратегия оптимизации имеет смысл, потому что маленькие целые числа всплывают повсюду, и, учитывая, что каждое целое число занимает 24 байта, оно экономит много памяти для типичной программы.

Это также означает, что CPython предварительно выделяет 266 * 24 = 6384 байта для всех этих целых чисел, даже если вы не используете большинство из них. Вы можете проверить это с помощью функции id(), которая дает указатель на фактический объект. Если вы называете id(x) несколько для любого x в диапазоне [-5, 256], вы будете каждый раз получать один и тот же результат (для одного и того же целого числа). Но если вы попробуете это для целых чисел за пределами этого диапазона, каждый из них будет отличаться (новый объект создается на лету каждый раз).

Вот несколько примеров в этом диапазоне:

Вот несколько примеров за пределами диапазона:

Память Python против системной памяти

CPython является своего рода притяжательным. Во многих случаях, когда на объекты памяти в вашей программе больше не ссылаются, они не возвращаются в систему (например, маленькие объекты). Это хорошо для вашей программы, если вы выделяете и освобождаете много объектов (которые принадлежат одному и тому же 8-байтовому пулу), потому что Python не должен беспокоить систему, что относительно дорого. Но это не так здорово, если ваша программа обычно использует X байтов и при некоторых временных условиях она использует в 100 раз больше (например, анализирует и обрабатывает большой файл конфигурации только при запуске).

Теперь эта память 100X может быть бесполезно захвачена в вашей программе, никогда больше не использоваться и лишать систему возможности выделять ее другим программам. Ирония заключается в том, что если вы используете модуль обработки для запуска нескольких экземпляров вашей программы, вы строго ограничите количество экземпляров, которые вы можете запустить на данном компьютере.

Профилировщик памяти

Чтобы измерить и измерить фактическое использование памяти вашей программой, вы можете использовать модуль memory_profiler. Я немного поиграл с этим, и я не уверен, что доверяю результатам. Он очень прост в использовании. Вы декорируете функцию (может быть главной (0 функция)) с помощью декоратора @profiler, и когда программа завершает работу, профилировщик памяти выводит на стандартный вывод удобный отчет, который показывает общее количество и изменения в памяти для каждой строки. Вот пример программы, которую я запускал под профилировщиком:

Вот вывод:

Как вы можете видеть, занято 22,9 МБ дополнительной памяти. Причина, по которой память не увеличивается при добавлении целых чисел как внутри, так и вне диапазона [-5, 256], а также при добавлении строки, заключается в том, что во всех случаях используется один объект. Непонятно, почему первый цикл диапазона (100000) в строке 8 добавляет 4,2 МБ, в то время как второй цикл в строке 10 добавляет всего 0,4 МБ, а третий цикл в строке 12 добавляет 0,8 МБ. Наконец, при удалении списков a, b и c освобождается -0.6MB для a и c, но для b добавляется 0.2MB. Я не могу понять эти странные результаты.

Заключение

CPython использует много памяти для своих объектов. Он использует различные приемы и оптимизации для управления памятью. Отслеживая использование памяти вашим объектом и зная модель управления памятью, вы можете значительно уменьшить объем памяти вашей программы.

Advertisement
Did you find this post useful?
Want a weekly email summary?
Subscribe below and we’ll send you a weekly email summary of all new Code tutorials. Never miss out on learning about the next big thing.
Scroll to top
Looking for something to help kick start your next project?
Envato Market has a range of items for sale to help get you started.